
Process Model Extreme Programming

Jan Dielewicz
jadi04@student.bth.se

Kai Petersen
kape04@student.bth.se

Sebastian Stein
sest04@student.bth.se

Kashif Ahmed Khan
kakb04@student.bth.se

Abstract

Today software is developed by applying a defined pro-
cess - a software process. The application of a software
process shall ensure to fulfill the needed quality within a
fixed time-frame and budget.

In the science of software engineering several software
processes were developed and defined in the last 30 years.
All software processes have specific advantages and disad-
vantages. In the last years the software process Extreme
Programming got high attention from the software engi-
neering community, because Extreme Programming denies
the validity of several software engineering dogmas.

Taking a short look Extreme Programming’s radicalism
can be explained with the extreme application of known
software engineering practices. A more detailed investiga-
tion shows instead, that Extreme Programming is based on
a complete different world view.

This report starts by describing this new modern world
view. Afterwards the software process Extreme Program-
ming will be described in detail. At the end there will be a
discussion of Extreme Programming’s advantages and dis-
advantages. This discussion will show, that Extreme Pro-
gramming can not be applied in all software projects, but
that Extreme Programming has some valuable ideas. This
discussion will be completed with an example how to apply
Extreme Programming in large-scale projects.

1. Introduction

Software is the product of a software vendor. The soft-
ware vendor develops software for a customer. Thereby
it does not matter if it is an external or internal customer.
Mostly the software development is conducted in projects.
The characteristics of a project are presented in the follow-
ing [17, p. 4]:

1. A project has a purpose.

2. A project is unique.

3. A project is temporary, it has a limited time-frame and
the project organisation is disbanded at project end.

4. A project involves people from different departments
and it cuts across organisational lines.

5. A project comes always with a risk to fail, because a
project deals with uncertainty.

The in point 4 mentioned involvements of different peo-
ple are labelled as the project team. Every project member
can act in different roles, e. g. as a project manager.

Customers and software developers mostly fix budget,
time, requirements and quality standards at the beginning
of the project. For the success of the project on the part
of the software developer it should fulfill the requirements
and quality standards. Furthermore the project should be
completed within time and with lesser costs than agreed.

For the successful conduction of the project the software
developer mostly follows a software development process
model. A process model describes a set of activities and
their inputs and outputs. Inputs and outputs are referred to
as artifacts. Furthermore each activity is linked to a role
which has to be filled out by one of the team members.

Actually a lot of process models like the waterfall model,
V-model as well as a set of incremental and plan driven ap-
proaches exist.

Extreme Programming is a further process model for the
arrangement of the software development process. Extreme
Programming is characterised by its radical nature. It lays
aside generally accepted dogmas of software engineering
such as late changes occur significantly higher costs, de-
tailed documentation as a factor of success and up-front-
design. A lot of articles about Extreme Programming can
be found in expert databases. According to [1] there is few
empirical evidence for the value of Extreme Programming
in practice, but the method itself is often discussed in jour-
nals and proceedings. Unfortunately often the philosophy

behind Extreme Programming is not considered, but with-
out this consideration there is no whole picture of what Ex-
treme Programming really is. Therefore the philosophy be-
hind Extreme Programming is presented first. After that the
planning process is described. At the end the advantages
and disadvantages of Extreme Programming are discussed.

2. Philosophy behind Extreme Programming

2.1. Mechanical World View

Over centuries, the science is determined by the mechan-
ical world view. The basis for this point of view was laid by
Isaac Newton in 1687 with his work “Philosophiae naturalis
principia mathematica”. According to this work the world
is a complex machine which is based on a few laws of na-
ture. Furthermore the present condition can be examined
exactly at any time. With the entire knowledge of nature
laws and the actual condition of the world the possibility of
calculating future and past conditions is given. The impli-
cation of this is that the world’s future development can be
calculated exactly.

This theory was reflected in all scientific disciplines.
Julien Ofray de la Mettrie for example presents the human
being as a machine in his work ”L’homme machine”. In the
field of economics this theory was also accepted, e. g. by
Adam Smith or Frederick Winslow Taylor1. At last the most
complex machines built by humans are computers. The de-
velopment of the computer can be led back to the calcu-
lating machines constructed by Bacon and Pascal. Those
machines are using mechanic mechanisms for calculation,
similar to clockworks.

In the field of software engineering the mechanical world
view can be found as well. In general it can be assumed that
software can be constructed and developed successfully on
the basis of predefined software development processes. As
a result of this software development can be planed and all
risks can be reduced significantly.

2.2. Modern World View

The mechanical world view is a valuable basis for sci-
ences. Developments in all scientific fields like medicine
and technique gained a lot from this theory. Nevertheless
the science explores new territories where the mechanic
law of nature is not valid. An example for this can be
found in physics. An exact description of the movement
of electrons and neutrons based on the mechanic law of
nature is not possible. Therefore, since the 20th century
has begun, quantum mechanics, Einstein’s theory, quantum

1The principles of scientific management

physics and quantum mechanics turned away from the me-
chanic law of nature. No name exists for this new point of
view, therefore it is just called modern world view.

The modern world view is of course not only applied
within physics and chemistry, but also in all other sciences.
Management has overcome the taylorism and has a totally
different point of view nowadays. Another example is stated
by Arthur [2], who says that the information technology in-
dustry doesn’t follow classical market theories as postulated
according to Adam Smith.

The modern world view is based on the assumption that
the present condition of a system can not be determined ex-
actly and that the development of a new system processes
discontinuously. This leads to the conclusion that it is not
possible to calculate the future condition of a system. Dif-
ferent theories describing such systems exist like:

• Autopiesis (social science) [14]

• Synergetik (physics) [11]

• Chaos Theory [12]

The modern world view is the basis of the Extreme Pro-
gramming philosophy. The subtitle of the original Extreme
Programming book [4] shows that the author accepts change
and that he is willing to utilize it. Therefore it can be as-
sumed that this modern world view describes the philoso-
phy of Extreme Programming. The author accepts the insta-
ble environment around the software development process.
As a consequence approaches have to be discovered which
are appropriate referring to the instability of the environ-
ment. As Kent Beck said: “Change is the only constant.”
[4, p. 28]

After the presentation of the philosophy behind Extreme
Programming the ideas and principles of Extreme Program-
ming are presented.

3. Core Concept and Planning

3.1. Introduction

Extreme Programming is not a result of research, this
approach was invented by Kent Beck who is a practitioner.
Therefore, Extreme Programming is based on his practical
experiences and the experiences of people who worked to-
gether with him. People who support Extreme Program-
ming especially refer to the C3 software project for Daim-
ler Chrysler as a successful Extreme Programming project.
However, the hardest opposers of Extreme Programming
also refer to this project because today it is not clear if the
project really was a success.

Beck’s first published work about Extreme Programming
[4, p. 28] mainly consists of topics like the concrete devel-
opment process, requirements engineering, design and test.

2

Only a few hints are given to the planning process. The
planning process is presented in more detail in his second
published book [5] about Extreme Programming. Accord-
ing to this published work of Kent Beck the following sec-
tion is structured. First, some fundamentals and the Ex-
treme Programming process are presented. After that the
planning process is discussed.

3.2. Four Basic Values

Extreme Programming consists of four fundamental val-
ues [4, p. 29ff]:

• Communication

• Simplicity

• Feedback

• Courage

Extreme Programming is totally based on this four fun-
damental values. They can be referred to as the fundamen-
tals of a project culture and it should be assured that all team
members internalise these values.

Extreme Programming tries to assure thecommunication
between developers, customer and management by formu-
lating a set of core practices. Communication is essential
for successful cooperation and teamwork. Since communi-
cation is so essential it has to be supported and maintained
because it can be disturbed easily. A so called coach is re-
sponsible for frictionless communication. If the commu-
nication is disturbed somehow the coach should interfere
actively.

Extreme Programming demandssimplicity. The aim is
to produce most simple solutions for problems. Developers
should not consider in advance what kind of program details
could be necessary in the future. This anticipation may lead
to wrong conclusions which occurs higher costs. The easi-
est way to solve a problem can be recognised by frictionless
communication. Furthermore the architecture should be a
simple construction because: “The simpler the system, the
less you have to communicate about it.” [4, p. 31] Extreme
Programming itself denies complex process models like Ra-
tional Unified Process and requires a simple set of rules.
Therefore the principles and fundamentals of Extreme Pro-
gramming can be presented on a few pages.

Furthermore Extreme Programming demandsfeedback.
Feedback can be given by conducting tests. Tests help to
inform the developer on the current system’s status. As a
consequence of this, defects can be detected and corrected
immediately. Also the customer should get reports about the
project’s status frequently. This gives him the opportunity
to interfere if something is going wrong. Another advantage
is that the customer gets feedback on his demands, how far

Costs

Time

Figure 1. Dependency cost of change over
time by Boehm [3]

the developers understand his demands and what efforts are
necessary to satisfy the customer’s demands. The customer
gets early feedback in the form of a running system. This
gives gives the customer the opportunity to influence the
implemented solution in a direct manner.

Courage is needful to conserve the before mentioned
principles consistently. A lot of rules defined by the own or-
ganisation have to be broken. Extreme Programming claims
to destroy not working code and to start from the beginning.
Furthermore a trustful and honorable relationship should be
established between customer and developer. The customer
has to be informed if delays occur. This proceeding surely
requires courage.

These four fundamental values are working together and
they support each other. Surely it would be possible to for-
mulate the fundamental values with other expressions. Be-
sides the fundamental value the hypothesis exist that late
changes occur significantly higher costs than early well
known changes. This hypothesis is presented in the next
section.

3.3. Cost of Change

As mentioned before2 Extreme Programming declares
some dogmas of software engineering as invalid. One of
those dogmas states that for late changes in a project the
fixing costs will be much higher compared to early changes.
The exponential correlation is shown in figure 1 on page 3.
This theory was proclaimed by Barry Boehm [3]. A logical
consequence from this theory is to try to identify all nec-
essary and potential changes as early as possible to prevent
late changes. Therefore many different process models in-
clude an intensive phase for analyses in the beginning of
the software project. If software development is compared
to house construction, it is easy to understand this theory.

2section 1 page 1

3

Costs

Time

Figure 2. Dependency cost of change over
time by Beck [4]

If the base-plate is once set up, the construction of an un-
derground parking will cause tremendous additional costs
compared to the approach which would have included the
underground parking in the beginning.

In opposition Beck [4, p. 21ff] assumes that the costs
depending on the time only increase slowly and asymptotic
reach a maximum level. This is shown in figure 2 on page 4.
Beck motivates that software can be changed, whenever the
effects of the changes can be analysed by automatic testing.
Especially when the design of the software is kept simple,
the possibility for changes is increased. In this the four fun-
damental values at least partly find a representation: Sim-
plicity of the design, feedback through automatic testing
and courage to accept and realise changes are necessary.

When this ratio between time and costs is valid, the soft-
ware development process can be designed in a total dif-
ferent way. An intensive analysis at the beginning of the
project is not necessary anymore. The design of the soft-
ware can be developed step by step and furthermore changes
can be accepted throughout the whole project.

In the following the Twelve Core Practises of Extreme
Programming are presented. Those Core Practises take ad-
vantage of the reversed cost coherency and include the four
fundamental values.

3.4. Twelve Core Practices

Starting from the four fundamental values Extreme Pro-
gramming defines 12 Core Practices [4, p. 53ff]. These Core
Practises have to be applied in total to make Extreme Pro-
gramming working. Beck [4] several times points out that
these Core Practises are not new at all, but were successfully
applied for many years in software development already. In-
deed their combination and their consequent (extreme) use
in the context of Extreme Programming are unique. The 12
Core Practises are:

• Planning Game

• Small Releases

• Metaphor

• Simple Design

• Testing

• Refactoring

• Pair Programming

• Collective Ownership

• Continuous Integration

• 40-Hour Week

• On-Site Customer

• Coding Standards

At this place the Core Practices will be described in de-
tail.

Planning Game: The Planning Game has been revised
since its initial publication [4] and will be discussed in sec-
tion 3.5 on page 5 in more detail. During Planning Game the
requirements are described in a story-like way3. For those
stories the effort according to time and costs is estimated.
Together with the customer the prioritisation is done. Fur-
thermore the customer and vendor together define which
stories are included in the next release of the software. On
this basis the release plan is set up. Since the customer may
change his requirements at any time, a Planning Game has
to be conducted for every larger changes.

Small Releases: Each new release of the software shall
be as small as possible, and shall include the most valuable
stories. It is preferable to have new releases every one to
three month. The frequent releases shall make it possible
for the customer to use the most valuable features as early
as possible. In addition those frequent releases shall ensure
feedback from the customer.

Metaphor: Extreme Programming does not request for a
distinct design phase. To be able to have a shared model of
the software, the Metaphor is used. The Metaphor repre-
sents the basic idea of the system. On its basis the commu-
nication is build up as, e. g. terms and phrases used in the
context of the Metaphor are used by the developers.

3similar to use cases

4

Simple Design: The design of the software shall at any
time be as simple as possible. In detail this means that all
test cases are met, there is no redundancy in the implemen-
tation, the Metaphor is implemented and classes and meth-
ods are reduced to a minimum. An anticipation of future
requirements is not welcome, since it is never for sure that
these requirements would not be changed or completely dis-
missed. In this case the implementation would have caused
unnecessary costs.

Testing: During the implementation always a test is de-
veloped first, before the underlying source code is devel-
oped. This development approach is named as Test Driven
Development. Extreme Programming distinguishes be-
tween two types of tests. Unit tests are written by the devel-
oper themselves and cover single methods or classes. Usu-
ally it is necessary to have many tests for a complete class.
Functional tests are written by the customer, if necessary,
with support of the developer. Functional tests cover com-
plete features. After each change to the program code, each
test has to be conducted newly. Only if all tests were passed,
the new code is allowed to enter the system.

Refactoring: Since Extreme Programming renounces an
explicit design phase, the software design has to be con-
tinually revised and improved. Very often it is necessary
to simplify specific parts or source out program code into
new methods or classes. These activities only change the
internal structure of the source code, but never affect the
functionality of the program [10, p. 53f]. This process is
called Refactoring. In the last couple of years, many stan-
dard methods [10] were developed, to assist in identifying
useful changes in design and implementing them.

Pair Programming: Every source code implemented in
use of Extreme Programming has to be developed in pairs.
This means that always two developers work at one prob-
lem at the same time. Usually both developers use a sin-
gle computer. It might be necessary to adapt the workplace
environment [20, p. 67ff]. Pair Programming is not about
monitoring each other, but about developing solutions to-
gether. Ideally the pairs will be new arranged at least once
a day. Pair Programming guarantees the knowledge transfer
in between the developers.

Collective Ownership: Every developer has all rights ac-
cording to the source code. He is allowed to make changes
everywhere in the code. Therefore every developer is re-
sponsible for the whole program code.

Continuous Integration: As soon as a pair of developers
has finished a feature, the new or changed code is integrated

in the overall system. The integration is successful, when
the system still passes all tests. There has to be at least
one integration per day. Program code that could not be
integrated at the end of a day has to be thrown away.

40-Hour Week: In Extreme Programming there is no
overtime allowed for more than one week. When overtime
is necessary during one week, there must not be any over-
time in the following week. A permanent overtime indicates
a general problem with the project that can not be solved by
overtime. The necessity for overtime is only a symptom of
a problem, but not its solution.

On-Site Customer: Extreme Programming demands to
have the customer, or at least representative of the customer,
in every team. The customer shall be accessible for the de-
velopers at any time. Furthermore he is the one to specify
the functional tests and the stories, as well as to prioritise
the different stories. It might be necessary for the customer
to be supported by the developer to be able to do this.

Coding Standards: Since all developers work on the en-
tire code, it is necessary to have a common style of writing
the code. This means it shall not be possible to identify the
person, who wrote a specific part by looking at the code.
This includes that everyone shall be able to understand any
part of the code.

3.5. Planning and Requirements Engineering

In this section the Extreme Programming software de-
velopment process is described in detail. This includes the
demonstration of the use of the 12 Core Practices. A graph-
ical representation is given with figure 3 on page 6.

At the very beginning of each project, the project’s scope
has to be defined. For that purpose the system metaphor
and a vision for the project has to be set up [5, p. 35ff].
During this so called architectural spike the technologies
that may be applied in order to implement the vision, are
investigated. The budget and the main areas of activities
(big plan) have to be specified. This is followed by a rough
effort-estimate of those activities. Furthermore all needed
tools and systems like test-system and configuration man-
agement are set up.

The next step includes the initial Release Planning [5,
p. 39ff]. Outgoing from the big plan the customer has to de-
velop the requirements represented by the stories. The size
of each story is estimated by the developers. Each story is
not allowed to take longer than 2 or 3 weeks. If a story can
not be implemented within this time-frame, the story has to
be divided up into smaller pieces. In the other case it might
be necessary to sum up some smaller stories into one story.

5

Iteration Release
Metaphor

User Stories
(Requirements)

Release Plan

Function Tests

Customer
Approval

changed
requirement

Latest Version

Bug

next
iteration

Architectural
Spike

Release
Planning

Acceptance
Test

Figure 3. Global process flow of Extreme Programming [19, figure based on]

The story is described in the words of the customer. Tech-
nical issues are not included. The stories shall be described
in only a few sentences. Furthermore for every story a test
(functional test), which allows the validation, has to be de-
scribed as well.

The customer has to order the stories by their business
value. Doing this, the priorities are set. Technical interde-
pendencies are of lower interest in this case. Further on the
deadlines for the different releases are defined. The devel-
opers, relating to their experiences, define how much devel-
opment can be done between two releases. On this basis the
stories are related to the different releases. As the result the
release planning delivers the release plan which displays all
releases and their stories, ordered according to their priori-
tisation.

In contrast to a release, which is supposed to be pub-
lished every one to two months, the development work is
done in iterations, which are supposed not to take longer
than one to three weeks. To reach the next release, couple of
iterations are necessary. At the beginning of each iteration
there is the iteration planning meeting [5, p. 87ff]. Within
the iteration planning the stories are subdivided into tasks.
The tasks represent the technical specifications, which are
developed together with the customer. The developers sign
up for the different tasks and distribute them to each other.
Each developer estimates the needed time for the task he
signed up for. The overall sum does not necessarily match
the rough effort-estimate. In case a capacity overload is ob-
vious, this is discussed with the customer. The customer
then decides which stories have to be delayed to further re-
leases. The iteration planning is always only done for the
next following iteration. In Extreme Programming this is
the detailed planning.

Now, the underlying iteration, shown in figure 4 on page
7 takes place. Each developer seeks for a partner to imple-
ment the task he signed up for. The project manager is not
coordinating this process, but leaves the coordination to the
developers. The pair first of all defines the unit test for their
task. In case of any uncertainties, the developers confer with
the customer. Not until the unit test is developed, the under-

lying code is implemented. It is possible that this makes
changes to existing code necessary. In this case refactor-
ing is applied. After a couple of hours the tested code is
integrated into the overall system. By passing all tests, the
integration is ensured.

During the iteration the progress is measured. Doing this
makes it possible to determine the likelihood of being able
to implement all stories planned for this iteration. When
larger deviations occur, a new release planning has to be
conducted.

As previously pointed out, the customer is allowed to
change existing stories or add new ones. The developers
estimate the necessary effort for the changes or the new sto-
ries. It might happen that the customer has to decide, which
other stories has to be dropped according to the changes or
new stories.

3.6. Organisational Aspects

Extreme Programming does not state how the organisa-
tion of the project should be structured. Every development
team consists of team members having equal rights. This
kind of organisation is not new; it was developed by G.
Weinberg in 1971 and is called egoless programming teams.

Normally egoless programming teams or decentralised
teams consisting of about ten or fewer members with differ-
ent qualifications [13, p. 107]. Two principles of Extreme
Programming were already applied by using egoless teams.
First, the source code is not owned by the person who pro-
grammed it, each line of code is owned by the whole team.
This implies that the source code is produced to achieve the
project’s goals, not to satisfy the ego of one programmer.
Second, the principle of direct communication is applied in
egoless programming teams. Everybody can communicate
with everybody about every concern without any formal re-
strictions. The leading rotates within the team. The team
leader becomes who has the best qualification to solve a
current problem appropriately.

One problem of egoless teams is that they are hard to
handle if the size of the team increases. Each new team

6

Integration

Task Pair Test Suite

getesteter
Code

good
design

bad
design

unclear
requirement

clear
requirement

fulfilled task

changed
story

Iteration
Planning

Pair Up
Create
Unit Tests

Pair Programming

Feedback
by Customer

Refactoring

Figure 4. Process flow of an iteration in Extreme Programming [19, figure based on]

Figure 5. Organisational structure of egoless
programming team [13]

member generates a large quantity of new communication
channels. A egoless team of 40 programmers has already
1560 communicate paths. The number of communication
paths can be calculated by the following formula:

communication paths = n ∗ (n− 1)

In the formula aboven is the number of team members.
By adding just one more person to a team of 40 program-

mers, 80 new communication paths must be added. The
growth in communication paths can be described by big-
O-Notation:O(n2). This means that communication paths
grow exponential by a factor of two with growing n. In fig-
ure 5 on page 7 the structure of the egoless programming
team is illustrated.

The needed communication paths in a egoless team of 5
persons are shown in figure 6 on page 7. It can be seen, that
each person in the team establishes 4 communication paths.

Figure 6. Communication paths in egoless
teams [13]

3.7. Extreme Programming and classical ap-
proaches

Although Extreme Programming is totally different com-
pared to classical process models, it seems as if the exis-
tence of some activities within software development and
therefore in the world of projects is invariant. Within this
section those activities, and how they relate to the 4 fun-
damental values and 12 core practices of Extreme Program-
ming, are presented. As basis for the discussion the systems
development cycle, as presented by Nicholas [17, Part II] is
used:

Conception: The initiation of the project is the main
event in the first phase, the conception phase. In this phase
the customer or user identifies the problem and comes up
with the idea to have a solution based on a software prod-
uct. Since this phase includes a feasibility study and the

7

contract negotiation, the involved organisations at least have
to have an idea what the problem exactly is about and how
a solution could look like. Usually process models do not
include this early stage of the project, and so does Extreme
Programming.

Definition: The definition phase of the project includes
the activities requirements engineering, system design and
planning according to costs and schedules. The result is a
detailed plan, which is basis for the customer either pro-
ceeding with the project or cancelling it. Now, in Extreme
Programming this phase and the detailed plan is missing.
Nevertheless, the planning game and the development iter-
ations with their iteration planning meeting take the role of
most of these elements. But in contrast to the techniques
and methods suggested by Nicholas [17, Part III] Extreme
Programming has a different approach: One will most likely
not find any network scheduling, program evaluation and
review techniques or resource allocation approaches in Ex-
treme Programming. Extreme Programming is not relying
on heavy weight methods, just as it tries to keep every-
thing simple, the methods used should also be simple and
as uncertainty is accepted, nothing is planned, which very
likely is matter of change anyway. But nevertheless, plan-
ning is done. Extreme Programming will not present a de-
tailed plan for the complete project with large and important
milestones. Instead, those small development iterations take
place. They are more like inch pebbles, not milestones.

Execution: During the execution phase the system itself
is implemented. Referring to classical process models, this
includes the implementation, testing, teaching and the roll-
out. These activities again, of course, are part of Extreme
Programming. But they are split by those small releases. So
it is not one phase, but several. Every development iteration
in this meaning is one execution phase and every release
delivers a software product to the customer.

Nicholas puts a lot of emphasis on the control process
[17, pp. 340-378]. Again in Extreme Programming this is
covered by the iteration planning meeting, but without using
sophisticated systems or methods.

Operation: In the operation phase the customer uses the
product. The vendor might stay being involved by main-
taining and supporting the delivered system. Usually clas-
sical process models do not spend too much attention to this
phase again. And it is the same with Extreme Programming.
Nevertheless, in Extreme Programming maintenance is very
easy to conduct. It is nothing else, but just adding one or
some additional releases with all related steps, especially
the development iterations.

3.8. Common Reasons for Project Failures and Ex-
treme Programming

Nicholas identifies a couple of potential reasons for
projects to fail [17, p. 537]. In this context some of the
aspects belonging to the “Level III” shall be discussed:

Inadequate communication: On of the fundamental val-
ues is communication. Planning game, pair programming,
on-site customer and the development iteration meetings are
the answers Extreme Programming gives to this problem.

Noninvolvement of user: Feedback and communication
are fundamental values of Extreme Programming. The
small releases and the on-site customer shall improve the
user involvement.

Inadequate Definition: The planning game and the on-
site customer as well as the user stories and the metaphor
try to deliver a precise definition. The small (and of-
ten) releases shall give frequent feedback in order to find
out whether the chosen direction will fit to the customer’s
needs.

Numerous changes: Extreme Programming does not try
to prevent changes to occur, but takes them into account
right from the beginning. Refactoring and simple design
shall weaken the changes effects.

4. Discussing Extreme Programming

4.1. Introduction

The literature on Extreme Programming is very much
based on practical experiences. It is easy to find many hints
on particular approaches, usually based on anecdotes [16,
e. g.]. There is only little literature on the formal aspects
of the Extreme Programming process. This may hinder the
implementation of Extreme Programming in organisations,
since usually the development divisions will not have the
time to study the original literature and look into the prob-
lems with Extreme Programming.

Extreme Programming is not applicable for all kinds of
projects of course. In addition it must be clearly stated that
Extreme Programming most probably is not useful for the
majority of projects. The use of Extreme Programming is
only making sense, when the requirements are very much
uncertain. If it is possible to easily identify the requirements
at the beginning, it would not make any sense not to do this
[15, p. 10ff].

Extreme Programming comes along with two basic as-
sumptions. Those two assumptions have to be accepted

8

Costs

TimeBoehm

XP

a)

b)

Figure 7. Comparing cost graph by Extreme
Programming and Boehm

to understand Extreme Programming. Those two basic as-
sumptions are:

• Code is easy to modify

• Good code is easy to understand

4.2. Costs of Change

The core practices of testing and refactoring are used in
Extreme Programming to ensure the easy changeability of
the code. Only if this is the case, then the changed ratio
between time and costs4, as postulated by Kent Beck, is
valid. Until now it is not stated how this ratio between time
and costs actually behave [15, see also p. 119ff]. It may
be assumed that within Extreme Programming the costs for
changes are higher compared to early identified costs within
a classical model. It is not clear, at which point both graphs
(representing the respective ratio between time and costs)
intersect. This problem is shown in figure 7 on page 9. If
in Extreme Programming the graph b) would be relevant,
its use will pay off very fast: Throughout the entire devel-
opment time-frame the costs for changes are much lower or
only little higher compared to the classical model. But if
graph a) would be relevant for Extreme Programming, then
it is very unlikely that the changeability will pay off finan-
cially.

Up to now none of the shown graphs a) or b) in figure 7
is approved. It is a matter of fact that due to better software
development tools and clearer software design the costs for
changes decreased. Especially a clear software design is in
the context of Extreme Programming in dispute. Extreme

4see section 3.3 on page 3

Programming asks for a simple design and ongoing revision
and improvement of bad design through refactoring. Some
feedback from the use in practice [18, e. g. p. 90] shows that
refactoring is neglected in the daily routine and therefore no
clear software design is formed.

It may assumed that the effort for refactoring increases
during the project’s progress and therefore less resources
can be used for the implementation of new features. In this
situation a valid question is, whether the effort for refactor-
ing may reach a level where it is impossible to implement
new features at reasonable costs.

Extreme Programming shows its strength in those cases,
when it is impossible to anticipate late change requests [15,
see p. 122]. By explicitly allowing changes within the pro-
cess, Extreme Programming found a good approach to deal
with this common problem.

The unit testing may be another major source for costs.
Extreme Programming demands to have unit test for all
methods and classes. If, e. g. due to refactoring, changes
are made to the underlying class, then all affected unit tests
have to be adapted as well [15, p. 74].

4.3. Good Code is easy to understand

The idea of easy to understand code is based on the idea
of Literate Programming [6]. Literate Programming as-
sumes that program code can be written in a way that it
is understandable without any comments included in the
sources. This may be achieved e. g. by smart usage of
names for methods and variables [15, p. 75]. Since there
are many tools5 that deliver a complete API documenta-
tion or the according UML diagrams from a documented
source code, it is not easy to understand why to renounce
any documentation of the source code. Furthermore Lit-
erature Programming makes refactoring difficult, since not
only the functionality must be kept, but also the readability
must be ensured.

When a developer wants to get an overview on a specific
module or subsystem, he often does not want to read the
source code, but have a look into the design documentation.
Extreme Programming does not guarantee that this design
documentation is generated or maintained.

The ambition for an easy to read source code is certainly
assisted by the use of coding standards. But using the source
code as the only documentation seems to be very problem-
atic.

4.4. Requirements Engineering

Within Extreme Programming requirements are defined
as user stories. This is mainly done by the customer. It is

5like JavaDOC, Doxygen or documentation generator integrated in Mi-
crosoft .NET

9

doubtful that the customer is able to formulate accurate user
stories [15, see p. 60ff]. Very often customers have unde-
fined ideas about the requirements. Usually it is an essential
part of each project to stepwise investigate the problems and
develop the solutions together with the customer. Extreme
Programming tries to support the customer to formulate the
user stories in giving frequent feedback. It is questionable,
if this is enough.

In addition it seems to be difficult to formulate the user
stories in a way that their realisation is possible during one
iteration of three or four weeks. In this context it should be
mentioned that the acceptance tests are based on those user
stories. This implies that the requirements are founded on
a functional basis. The direct measurement of qualitative
requirements as reliability or safety is much more difficult.

4.5. Estimates and Monitoring Progress

Extreme Programming demands the developers to de-
liver the estimates. This may lead into a high commitment
of the developers. On the other hand studies [9, p. 29] have
shown that estimates made by experts rather than by devel-
opers are more precise. In addition it may be assumed that
not all developers have equally developed abilities to give
good estimates.

The estimates in Extreme Programming are only done
for small time-frames. Due to this a high degree of pre-
cision for the short term planning can be reached. On the
other hand the long term planning is not assisted through
this. Furthermore only the requirements with the highest
priority are implemented. It is easily possible to loose focus
concerning the time-frame and the budget.

Extreme Programming postulates contracts between the
customer and the vendor that do not relate to a fixed price
but to a specific time-frame. Again, it seems to be question-
able if the customer agrees to this and would accept those
contracts.

4.6. On-site Customer

The immediate inclusion of the customer into the project
team is problematic [15, p. 81ff]. In many projects this
might be impossible. The customer likely is not willing to
put the needed financial effort into the project to have his
own employees at the vendor’s site. Furthermore this is not
the usual procedure within software development projects.

Further more it is doubtful that the customer (respec-
tively the employee at the vendor’s site) has the necessary
domain knowledge, the necessary overall overview and suit-
able decision-making authority. Very often the customer
would have to send out several employees which would in-
crease the overall effort and cause additional costs.

To avoid these problems, it might be useful to install an-
alysts and requirements engineering professionals. But they
could not completely substitute the customer, since they do
not have all necessary information and knowledge. An an-
alyst will have problems to identify political aspects of a
project since he has no knowledge on the informal network
at the customer’s site.

4.7. Pair-Programming

Another point that led into controversial discussions is
the constraint to apply pair programming in any case. Very
often coding tasks include easy to solve aspects, e. g. the
interface design, but also very hard tasks as the implemen-
tation of complex algorithms. To apply pair programming
in any case is not necessary. Instead it is better to find a
good balance.

The human factor might be another problematic aspect
of pair programming. The pairs have to be formed carefully
[20] in order to avoid negative effects, e. g. caused by per-
sonal conflicts. The self-coordinated pairing as suggested
by Extreme Programming appears unrealistic and danger-
ous.

4.8. Direct Communication and Knowledge Trans-
fer

Extreme Programming very much relies on direct com-
munication. The knowledge transfer between the employ-
ees mainly takes place by 1:1 communication during pair
programming. The formal description of the system is ne-
glected or even prevented. The direct communication is not
scalable to any team-size [8]. The problem is illustrated in
figure 8 on page 11 In part a) only direct communication
between all 6 team members is applied. In order that ev-
eryone can communicate directly with all other team mem-
bers a total of 15 communication paths is needed. In part
b) the team is divided into two sub-teams. Between both
sub-teams only one communication path is established. By
implementing this indirect communication path, the overall
sum is reduced to 7 communication paths.

Since Extreme Programming relies on having the com-
plete project know-how within the underlying source code
and represented by the team members’ knowledge, Extreme
Programming is to be rated negatively according the knowl-
edge management. The loss of only few team members
might stop the entire project. Extreme Programming tries
to avoid this by the use of pair programming and collective
code ownership. During a project with several team mem-
bers and a time-frame of several months, it seems unrealistic
that every developer can build up a complete understanding
of the entire system. But the developer needs this complete
understanding so that he is able to make useful changes at

10

a) 15 communication paths using
 direct communication

b) 7 communication paths using
 mixed communication

Figure 8. Number of communication paths be-
tween 6 persons

any place in the source code. Only then the developer can
cope with the responsibility derived from collective code
ownership. It is obvious that this postulation, formulated in
Extreme Programming, is not accomplishable. Otherwise
the entire system could be developed by only one developer.
Another disadvantage of the lack of design documentation
occurs when introducing a new employee into the project.
A new employee could not get familiar with the system by
only reading documentation of course, but still this helps
very much.

Extreme Programming’s exclusive focus on direct com-
munication is regarded to be Extreme Programming’s ma-
jor disadvantage. It should be mentioned that methods and
procedures exist to weaken these negative effects. In the
following section a case study is presented which tried to
apply Extreme Programming in a large-scale project.

4.9. Extreme Programming in large-scale Project

This section refers to the proceeding of Cao et al. [7]
who discuss the application of Extreme Programming in
large-scale projects. As mentioned before, communication
problems may occur when having a high amount of partic-
ipants and stakeholders in the project. But this is not the
only problem. Furthermore software architectures are hard

to design for complex software and consequently this plan-
ning should take place at the beginning of the project. From
the other point of view agility is also essential in large-scale
projects, because of dynamic environments and frequently
changes concerning requirements. Cao et al. [7] con-
ducted a case study where they propose a set of techniques
for the introduction of Extreme Programming in large-scale
projects.

The studied company develops complex enterprise sys-
tems for the finance sector and 22 developers were involved
in the project. Core practices were used, but in an adjusted
form instead of the pure form developed by Kent Beck [4].
A selection of changes in core practices, according to [7] is
presented in the following:

Upfront design: An upfront design was conducted, even
if it is not applied by Extreme Programming because of
frequently changing environments. But in the case study,
Cao et al. found out that upfront design supports other ag-
ile practices like pair programming and refactoring. De-
sign patterns, defined by the customer’s needs, helped to
make the communication between pair programmers more
efficient. Also the knowledge transfer between pairs is
enhanced by using design patterns. Furthermore existing
functions which were based on the patterns could be reused
frequently.

Short development cycles: Customers always want
something changed. Therefore short release cycles were
also used in the large-scale project, but with adaptations.
The upfront design itself took full six month. After that
the tasks were implemented as end-to-end functionalities
where the duration was not fixed like it is normally done
within Extreme Programming. In this case the duration was
aligned to the complexity and nature of each individual task.

Surrogate customer engagement: A continues customer
involvement is essential for large-scale projects. The com-
pany in this case study held frequent meetings to negotiate
problems, requirements and specifications. This often led to
changes in these areas. Often it is problematic to have the
customer always available if he is needed. In this case the
customer was surrogated by product managers and business
analysts who had good knowledge of the customer’s needs.

Flexible pair programming: Pair programming was ap-
plied for analysis, design and test case development. For all
other tasks like coding it was in the hand of the developers
if they would share the monitor and keyboard. As stated
by one of the project managers who worked for the studied
company, pair programming works better when the devel-
opers have a choice. Cao et al. [7] formulated the following
benefits of pair programming:

11

• Pair programming reduces development time, two pro-
grammers together achieved the goal in only 80% of
the time they would have needed if they worked alone.

• Pair programming reduces training time, program-
mers with different experience levels learn from each
other. An inexperienced programmer becomes produc-
tive very fast. Furthermore knowledge is spread across
the development team because of pair changes. In the
studied company a pair worked together for maximal
6 weeks and in average for 2 weeks.

• Pair programming improves the quality of code, when
programmers negotiate about their coding they dis-
cover inconsistencies or defects. Pair programming
creates a supportive environment where developers
find always somebody they can ask and talk to.

Reuse with forwarding refactoring: Based on design
patterns, they applied reuse in the form of forwarding refac-
toring. This means that new features are implemented,
based on existing architecture. In Extreme Programming
developers normally focus on their current needs, they do
not think about the reusability of their code. Thinking about
reusability will speed up the development process.

Controlled empowerment and organizational structure:
In the studied project a flat hierarchy was used. This led to
a flexible and responsive environment which helped to react
fast to changing environments. Furthermore decentralised
decision making was applied which led to motivation on
the part of the developers.

Summarised it can be said that pure Extreme Program-
ming can not be used for any project. The modification of
the core practices showed that they sometimes have to be
aligned to the project environment. But, as mentioned be-
fore, it is also important to have the interdependencies of
core practices in mind. It is important to be careful with
leaving one practice away, it may support another practice.
Such relationships become obvious by looking at the exam-
ple of dependencies between upfront design in form of de-
sign patterns and pair programming. The study showed that
a design pattern positively influences pair programming.

4.10. Discipline and Culture

As Beck [4, p. 151ff] points out, the realisation of Ex-
treme Programming in an organisation is not easy. Extreme
Programming postulates thatall 12 core practices6 have to
be applied entirely and consequently. The reason for this is
that the different core practices assist each other and weaken

6see section 3.4 on page 4

the other’s negative effects. The compliance with all core
practices demands significant discipline within the project
team [15, p. 66]. For example the simple design can only
be applied if later the design is revised by refactoring. If the
refactoring is neglected, the source code gets complex and
badly structured easily.

The use of Extreme Programming is always linked to the
risk that developers only adopt the pleasant core practises
such as the 40-hour week or the simple design and neglect
the less pleasant core practices such as refactoring and test
driven design. A project conducted in this manner most
likely is doomed to failure. This might cause the project
management to put a lot of pressure on the project team
to guarantee that all core practices are applied. This might
override many of the positive effects on the human level.

Implicitly Extreme Programming draws up some de-
mands to the overall organisation. The higher management
looses power due to e. g. the complete delegation of any
technical decision to the level of the developers. The same
problem occurs related to the shifting of the responsibility
for the estimates to the level of the developers. The project
management is disempowered due to this.

The integration of change as a fundamental part of a
project is a difficult intention for an organisation as well. It
can be understood as the avowal that every long term plan-
ning is useless because of the lack of precision. In many
companies a lot of employees are engaged with planning
and controlling. Changing the planning and controlling pro-
cess according to Extreme Programming withdraws the le-
gitimacy of these subdivisions. It is doubtful that such a
change to the corporate culture is very likely to happen.

Simple design and collective ownership are a potential
source for critical conflicts among the developers. Sim-
ple design enforces the experts to choose a simple design
against their knowledge in cases where they recognise that
refactoring will be needed in the next couple of days or
weeks. From a financial view this is senseless as well
[15, p. 66]. Following the theory of collective code own-
ership, everyone shall feel responsible for the source code.
But it might turn exactly the other way round. In this
case nobody feels responsible for the source code anymore.
Within Extreme Programming only the complete team can
be awarded, since it is not possible to identify individual
merits. This withdraws some aspects of the management’s
power.

5. Conclusions

The report showed that Extreme Programming is more
than its twelve core practices; it is a philosophy which fo-
cuses on the modern world view instead of the mechanical
world view. Furthermore Extreme Programming is a tool-
box which consists of interdependent core practices. There-

12

fore, the model can only modified hardly. But it is not
impossible to modify the model successfully according to
project needs as shown by the study on the usage of Ex-
treme Programming in large-scale projects.

Extreme Programming is not the solution for all prob-
lems; it also has its disadvantages and drawbacks. There-
fore it Extreme Programming can not be applied success-
fully in every kind of software project. When a company
decides to use Extreme Programming it should have in mind
that this process model deals best within projects labeled
with uncertainties.

References

[1] P. Abrahamsson, J. Warsta, M. T. Siponen, and
J. Ronkainen. New directions on agile methods: A
comparative analysis. InSoftware Engineering, Proceed-
ings 25th International Conference, 2003.

[2] W. B. Arthur. Increasing returns and the new world of busi-
ness. Harvard Business Review, (July-August):100–109,
1996. online available http://www.santafe.edu/arthur/.

[3] B. Barry. Software Engineering Economics. Prentice-Hall,
1981.

[4] K. Beck. Extreme Programming Explained: Embracing
change. Addison-Wesley, 1999.

[5] K. Beck and M. Fowler. Planning Extreme Programming.
Addison-Wesley, 2000.

[6] J. Bentley and D. Knuth. Literate programming.Communi-
cations of the ACM, 29(5):364–369, May 1986.

[7] L. Cao, K. Mohan, P. Xu, and B. Ramesh. How extreme
does extreme programming have to be? adapting xp prac-
tices to large-scale projects. InProceedings of the 37th An-
nual Hawaii International Conference, pages 83–92. IEEE,
2004.

[8] A. Cockburn.Agile software development. Addison-Wesley,
cop., Boston, 2002.

[9] T. DeMarco and T. Lister.Peopleware: productive projects
and teams. Dorset House Publishing Co., New York, 2nd
edition, 1999.

[10] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Boston, 1999.

[11] H. Haken. Synergetics.IEEE Circuits and Devices Maga-
zine, 4(6):3–7, 1988.

[12] R. Lewin. Complexity: Life at the Edge of Chaos. Macmil-
lan, 1992.

[13] M. Mantel. The effects of programming team structures on
programming tasks.Source of Communications of the ACM-
Archieve, 24(3):106–113, 1981.

[14] H. R. Maturana. Organization of the living: a theory of the
living organization.International Journal of Man-Machine
Studies, 7(3):313–332, 1975.

[15] P. McBreen.Questioning Extreme Programming. Addison-
Wesley, Boston, 2002.

[16] J. Newkirk and R. C. Martin. Extreme Programming In
Practice. Addison-Wesley, cop., Boston, 2001.

[17] J. M. Nicholas.Project Management for Business and En-
gineering. Elsevier Inc., Burlington, MA, 2004.

[18] M. Stephens and D. Rosenberg.Extreme Programming
Refactored: The Case Against XP. Apress, 2003.

[19] D. Wells. Homepage ExtremeProgramming.org.
1999. some figures based on figures in
http://www.extremeprogramming.org/.

[20] L. Williams and R. Kessler.Pair Programming Illuminated.
Addison-Wesley, 2002.

13

